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7. GRAPH ALGORITHMS 
 

§7.1. Eulerian Graphs 
The Swiss mathematician Leonard Euler (pronounced 

“Oiler”) once asked whether it was possible to go for a 

walk around the city of Königsburg, crossing each of the 

7 bridges exactly once. 

 

There are 4 pieces of land and 7 bridges. We can 

represent them by a graph with 4 vertices and 7 edges as 

follows. 
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This is a graph with multiple edges and we have 

chosen to focus on graphs with at most one edge 

connecting any two vertices. However the reason there is 

no such path extends to graphs in general, whether or not 

there are multiple edges. 

With a walk we must enter each vertex and leave 

each vertex so the degree of each vertex must be even. 

Euler didn’t make it clear whether one had to return to 

the starting point. If not, the degree of these two vertices 

could be odd. But the graph in question has all 4 vertices 

with odd degree. That is all 4 vertices have to be the start 

or end of a walk. The only way we could achieve the 

goal would be to take a helicopter ride at some point. If 

we had to return to where we started, two helicopter 

rides would be necessary – not what Euler had in mind! 

 

An Eulerian cycle in a graph (we are back to undirected 

graphs with no multiple edges) is one that passes along 

every edge exactly once. An Eulerian graph is one that 

has an Eulerian cycle. (Remember to pronounce 

Eulerian as “Oil-air-ian”.) 

 

Example 1: Which of the following graphs are 

Eulerian? 

 

 

 

 

 
A B C 



 193 

Solution: A is Eulerian, but not B or C. The third graph 

is clearly not Eulerian because it’s not connected. But 

being connected is clearly not enough. 

 

Theorem 1: An undirected graph is Eulerian if and only 

if it is connected, and every vertex has even degree. 

Proof: Suppose G is Eulerian.  Clearly G must be 

connected.  Moreover, since we must enter and exit 

every vertex along different edges the degree of every 

vertex must be even. 

Now suppose that G is connected and every vertex 

has even degree.  We prove the theorem by induction on 

the number of edges.  Suppose G has E edges and the 

theorem is true for graphs with fewer than E edges. 

 G clearly has a cycle.  Simply start at some point 

and move to another vertex.  Since every vertex has 

degree at least 2 we can continue the path until we repeat 

a vertex.  That portion of the path between the two visits 

to that vertex will be a cycle. 

 Remove the edges of this cycle and remove any 

vertices that are now isolated (these would have had 

degree 2 in the original graph), The resulting graph will 

have every vertex of even degree (we have removed 2 

edges from each vertex visited in this cycle). But it may 

no longer be connected.  Let C1, C2, … , Ck be these 

components. 

 

However each component is connected and will have 

every one of its vertices with even degree.  Moreover 
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these components will have fewer edges than G. Hence 

there is an Eulerian cycle in each of these components. 

 

Now, start at one of the vertices in the original cycle. 

This vertex will be in one of the Ci. Now trace out the 

Eulerian cycle in this component.  Continue around the 

original cycle. However, every time you enter a new Ci 

for the first time trace out the corresponding Eulerian 

cycle. Finally you’ll return to your starting point. This 

will be an Eulerian cycle for the graph G. 

 

Example 2: Suppose G is the graph: 

 

 

 

 

 

 

 

 

 

Start at A and travel the path AEHCJFE. Having 

repeated E we find the cycle EHCJFE. 

 

 

 

 

 

 

A 

B C D 

E 

F 

G 

H I J K 

A 

B C D 

E 

F 

G 

H I J K 
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Now remove this cycle. 

 

 

 

 

 

 

 

 

There are 2 components. Each has an Eulerian 

cycle, for example, ABE and CDKGFKJIC. 

Combining these with the original cycle, as 

described in the proof of Theorem 2, we get the Eulerian 

cycle EABE H CDKGFKJIC JFE. 

 

§7.2. Hamiltonian Graphs 
In 1857 the mathematician Sir William Hamilton created 

a puzzle that, in its day, was almost as popular as the 

Rubik’s Cube. It was a 

wooden dodecahedron 

in which the 20 vertices 

were labelled with the 

name of a city. The 

problem was to make a 

world tour, starting and 

finishing at the same city and passing along the edges, so 

that each other city is visited exactly once. 

 

A 

B C D 

E 

F 

G 

I J K 
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We don’t need a solid dodecahedron to solve the puzzle. 

The edges form a graph on a sphere that becomes a 

planar graph when we flatten it out. 

 

 

 

 

 

 

 

 

 

 

 

A Hamiltonian path in an undirected graph is a path 

that passes through each vertex exactly once.  It clearly 

cannot pass along each edge more than once, but some 

edges will not occur. 

 

A Hamiltonian cycle in an undirected graph is a cycle 

that passes through every vertex exactly once. (Of 

course it will return to the vertex where it began.) 

 

A Hamiltonian graph is an undirected graph that has a 

Hamiltonian cycle. Clearly a Hamiltonian graph must be 

connected. 

 

Hamilton’s Dodecahedron Puzzle is equivalent to 

finding a Hamiltonian cycle in the above graph. 
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Example 3: Arrange the numbers 1 to 10 around a circle 

so that the sum of any two adjacent numbers is a prime 

number. 

Solution: Create a graph in which the vertices are 

numbered 1 to 10 and where there is an edge connecting 

two vertices if their numbers total a prime number. Your 

graph might look a lot messier than mine, but it should 

be an equivalent graph in terms of what numbers are 

connected to what. It is worth trying to draw the graph 

with as few crossings as possible. 

 

 

 

 

 

 

 

 

 

 

 

Now to solve the puzzle we need to find a Hamiltonian 

cycle in this graph. That is, a path that passes through 

each vertex exactly once and returns to where it begins. 

It doesn’t matter where we start, because this will be a 

closed path. Clearly 1 2 5 8 3 10 9 4 7 6 1 is a solution. 

 

1 2 

3 

 

9 

5 8 6 7 

 

10 

 

4 
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Theorem 2 (ORE): If deg(X) + deg(Y)  n whenever X 

is not adjacent to Y in an undirected graph G with n 

vertices then G is Hamiltonian. 

Proof: Suppose G satisfies these conditions but is not 

Hamiltonian. Add extra edges until you reach a graph H 

such that H is not Hamiltonian but adding one extra edge 

UV makes a Hamiltonian graph K. Clearly this edge 

must be included in every Hamiltonian cycle of K. 

Removing this edge will give a Hamiltonian path: 

V1 V2 V3 …  Vn−1 Vn in H. 

Everything that follows refers to the graph H. 

 

Since G is a subgraph of H the assumption of the 

theorem carries across to H. This is because two vertices 

being non-adjacent in H implies that they are non-

adjacent in G and the degree of every vertex in H is 

greater than or equal to its degree in G. Also, since H 

has exactly the same vertices as G, H has n vertices. 

 

Let S = {i | Vi is adjacent to V1}. 

Then #S = deg(V1). Clearly 1  S. 

Moreover n  S, for if Vn is adjacent to V1 then adding 

this to the Hamiltonian path would give a Hamiltonian 

cycle. 

 

Let T = {i | i + 1  S}. Then #T = #S = deg(V1). 

Also Vn  T. 

Let R = {i | Vi is adjacent to Vn}. 

Then #R = deg(Vn). 
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Clearly Vn  R. 

Since n  S, V1 and Vn are not adjacent and so: 

deg(V1) + deg(Vn)  n. 

Hence #T + #R  n. Since #(T  R)  n − 1, 

#(T  R)  1. 

 

Let Vk  T  R. Then VkVn and Vk+1V1 are edges in H. 

Then V1V2,V3 …  Vk−1VkVnVn−1Vn−2 .. Vk+2Vk+1 … V1 is 

a Hamiltonian cycle in H, a contradiction. ☺ 

 

 

 

 

 

 

Example 4: Let G be the following graph. 

 

 

 

 

 

 

 

 

The number of vertices is n = 7. The degrees of the 

vertices are as follows: 

 

A B C D E F G 

3 5 4 3 4 4 5 

A B 

C 

D 

E 

F G 

V1 V2 V3 V4 Vk 

Vk+1 
Vn 

Vn−1 Vn−1 
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The pairs of non-adjacent vertices are: AC, AE, AG, BE 

and CD 

 

At first glance it might appear that G is not 

Hamiltonian. Suppose this is the case. 

Suppose that when we add the edge CD it is still 

not Hamiltonian. But adding the edge GD as well the 

graph is clearly Hamiltonian. So in terms of the notation 

of the above theorem H is: 

 

 

 

 

 

 

 

 

 

and K is 

 

 

 

 

 

 

 

 

The cycle ABCGDEFA is a Hamiltonian cycle in K and 

DEFABCGD is a Hamiltonian path in H. 

A B 

C 

D 

E 

F G 

A B 

C 

D 

E 

F G 
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V1 = D, V2 = E, V3 = F, V4 = A, V5 = B, V6 = C, V7 = G. 

S = {2, 4, 5, 6, 7}, T = {1, 3, 4, 5, 6}, R = {1, 2, 3, 6}. 

#T = 5 = #S = deg(D) = 5.  #R = deg(G) = 5. 

So T  R = {1, 3, 6}. 

Suppose we choose k = 1, so k + 1 = 2. 

Then we get the Eulerian cycle D GCBAFE D in H. 

Suppose we choose k = 3, so k + 1 = 4. 

Then we get the Eulerian cycle DEF GCBA D in H. 

Suppose we choose k = 6, so k + 1 = 7. 

Then we get the Eulerian cycle DEFABC G D in H. 

These are not Hamiltonian cycles for G, but 

DEFGCBAD is. So G is indeed Hamiltonian, as it ought 

to be since it satisfies the hypothesis of Theorem 2. 

 

§7.3. Minimal Spanning Trees 
Starting with any connected undirected graph we can 

obtain a tree by removing edges so as to remove cycles. 

If the resulting tree includes all the vertices we say that it 

is a spanning tree. 

 

Example 5: The following undirected graph G is 

connected. 
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The following is a spanning tree for G. 

 

 

 

 

 

 

 

Let’s now make G into a weighted graph. 

 

 

 

 

 

 

 

 

We transfer these weights to our spanning tree.  

 

 

 

 

 

 

 

 

The total weight of this spanning tree is 130. Now the 

vertices in our original weighted graph might represent 

towns, with the weights being the distances between 
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them. If we want to build roads connecting these towns, 

as cheaply as possible, we might choose to base the 

network on a spanning tree. This particular spanning tree 

would require a total of 130 kilometres of road. But 

perhaps there is one whose total weight is less than 130. 

 

The weight of a spanning tree is the sum of the weights 

of its edges. A minimal spanning tree in a weighted 

undirected graph is a spanning tree of lowest weight. 

How might we systematically go about finding such a 

minimal spanning tree? 

 

§7.4. Kruskal’s Algorithm 
Kruskal’s Algorithm (J.B. Kruskal) 

finds a minimal spanning tree in a 

weighted undirected graph. We 

start with an edge of lowest weight. 

At each stage we examine all the 

edges which could be added 

without producing a cycle, and of 

these edges we choose one of 

lowest weight. While this seems a 

good strategy it’s not clear that it 

will guarantee a minimal spanning tree at the end. 
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KRUSKAL’S ALGORITHM for finding a minimal 

spanning tree in a connected, weighted undirected 

graph. 

(1) Create a list of the edges and their weights, in 

ascending order of weights. Call this list A. 

(2) Create an empty list of edges, and their weights, 

called list B. 

(3) Delete any edges from list A which would create a 

cycle if added to the graph in list B. 

(4) If list A is empty END. 

(5) Transfer the first edge from list A to list B. 

(6) Go to step (3). 

List B will now contain the edges of a minimal spanning 

tree. 

 

Example 5 (continued):  We name the vertices. 
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STEP LIST A LIST B 

(1), 

(2) 

BF6 HK7 GJ8 GH9 AE10 

DI10 IK10 AG12 CD13 

BH15 AB16 FG17 CI20 

CH22 EF28 

empty 

(3), 

(4), 

(5) 

HK7 GJ8 GH9 AE10 DI10 

IK10 AG12 CD13 BH15 

AB16 FG17 CI20 CH22 

EF28  

BF6 

(3), 

(4), 

(5) 

GJ8 GH9 AE10 DI10 IK10 

AG12 CD13 BH15 AB16 

FG17 CI20 CH22 EF28  

BF6 HK7 

(3), 

(4), 

(5) 

GH9 AE10 DI10 IK10 

AG12 CD13 BH15 AB16 

FG17 CI20 CH22 EF28 

BF6 HK7 GJ8 

(3), 

(4), 

(5) 

AE10 DI10 IK10 AG12 

CD13 BH15 AB16 FG17 

CI20 CH22 EF28 

BF6 HK7 GJ8 

GH9 

(3), 

(4), 

(5) 

DI10 IK10 AG12 CD13 

BH15 AB16 FG17 CI20 

CH22 EF28 

BF6 HK7 GJ8 

GH9 AE10 

(3), 

(4), 

(5) 

IK10 AG12 CD13 BH15 

AB16 FG17 CI20 CH22 

EF28 

BF6 HK7 GJ8 

GH9 AE10 DI10 

(3), 

(4), 

(5) 

AG12 CD13 BH15 AB16 

FG17 CI20 CH22 EF28 

BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 
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(3), 

(4), 

(5) 

CD13 BH15 AB16 FG17 

CI20 CH22 EF28 

BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 AG12 

(3), 

(4), 

(5) 

BH15 AB16 FG17 CI20 

CH22 EF28 

BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 AG12 CD13 

(3), 

(4) 

BH15 AB16 FG17 EF28 BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 AG12 CD13 

(5) AB16 FG17 EF28 BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 AG12 CD13 

BH15 

END empty BF6 HK7 GJ8 

GH9 AE10 DI10 

IK10 AG12 CD13 

BH15 

 

This minimal spanning tree is 
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and its weight is 100, a big improvement on the previous 

spanning tree. Moreover, by Kruskal’s Theorem, we’ll 

never be able to do any better. 

 

An important stage in the algorithm is to delete those 

edges which, when added to the tree in list B, would 

create a cycle. If we have a diagram to look at we can do 

this ‘by inspection’. 

 

But if we have a graph with many thousand vertices 

there’s no way we’d attempt to draw it. The graph will 

only ever exist as a list of edges, together with their 

weights. So how would our Kruskal program deal with 

this? 

 

We can do this by keeping a list of the components in 

our graph B. Then, as we scan through the edges in list 

A, we delete those edges whose two vertices lie in the 

same component. 

 

If vertices P, Q were in the same component there would 

be a path connecting them. Adding the edge PQ would 

provide a second path from P to Q and hence there 

would be a cycle. In this case we’d delete that edge from 

list A. Otherwise that edge remains, unless it is chosen 

to be transferred to list B. 
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EXPANDED KRUSKAL’S ALGORITHM for 

finding a minimal spanning tree in a connected, 

weighted undirected graph. 

(1) Create a list of the edges and their weights, in 

ascending order of weights. Call this list A. 

(2) Create list B, an empty list of edges and their 

weights. 

(3) Create an empty list of components. Call it list C. 

(4) Delete any edges from list A where both endpoints 

lie in the same component. 

(5) If list A is empty END. 

(6) Transfer the first edge PQ from list A to list B. 

(7) If neither P nor Q is in a component create a new 

component PQ. 

(8) If P is in a component and Q is not add Q to that 

component. 

(9) If P, Q are in different components combine these 

components into one. 

(10) Go to step (4). 

 

Example 5 (again): 

STEP LIST A LIST B LIST C 

(1), 

(2), 

(3) 

BF6    HK7  GJ8  GH9 

AE10  DI10    IK10 

AG12  CD13  BH15 

AB16  FG17   CI20 

CH22  EF28 

empty empty 
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STEP LIST A LIST B LIST C 

(4), (5) 

(6) 

HK7  GJ8  GH9  AE10 

DI10 IK10 AG12 

CD13 BH15 AB16 

FG17 CI20 CH22 

EF28  

BF6 empty 

(7) HK7  GJ8   GH9   

AE10 DI10  IK10 

AG12 CD13 BH15 

AB16 FG17 CI20 

CH22 EF28 

BF6 BF 

(8), (9), 

(4) – (6) 

GJ8   GH9  AE10  

DI10 IK10 AG12 

CD13 BH15 AB16 

FG17 CI20 CH22 

EF28  

BF6 

HK7 

BF 

(7) GJ8   GH9   AE10  

DI10 IK10 AG12 

CD13 BH15 AB16 

FG17 CI20 CH22 

EF28 

BF6 

HK7 

BF HK 

(8), (9), 

(4) – (7) 

GH9  AE10  DI10  

IK10 AG12 CD13 

BH15 AB16 FG17 

CI20 CH22 EF28 

BF6 

HK7 

GJ8 

BF HK 

GJ 

(8), (9), 

(4) – ( 7) 

AE10 DI10 IK10 

AG12 CD13 BH15 

AB16 FG17 CI20 

CH22 EF28 

BF6 

HK7 

GJ8 

GH9 

BF 

GHJK 
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STEP LIST A LIST B LIST C 

(8), (9), 

(4) – (7) 

DI10 IK10 AG12 

CD13 BH15 AB16 

FG17 CI20 CH22 

EF28 

BF6 

HK7 

GJ8 

GH9 

AE10 

BF 

GHJK 

AE 

(8), (9), 

(4) – (7) 

IK10 AG12 CD13 

BH15 AB16 FG17 

CI20 CH22 EF28 

BF6 

HK7 

GJ8 

GH9 

AE10 

DI10 

BF 

GHJK 

AE DI 

(8), (9), 

(4) – (7) 

AG12 CD13 BH15 

AB16 FG17 CI20 

CH22 EF28 

BF6 

HK7 

GJ8 

GH9 

AE10 

DI10 

IK10 

BF 

DGHIJK 

AE 

(8), (9), 

(4) – (7) 

CD13 BH15 AB16 

FG17 CI20 CH22 

EF28 

BF6 

HK7 

GJ8 

GH9 

AE10 

DI10 

IK10 

AG12 

BF 

ADEGH

IJK 
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STEP LIST A LIST B LIST C 

(8), (9), 

(4) – (7) 

BH15 AB16 FG17 

CI20 CH22 EF28 

BF6 HK7 

GJ8 GH9 

AE10 DI10 

IK10 AG12 

CD13 

BF 

ACDEG

HIJK 

(8), (9), 

(4) – (7) 

AB16 FG17 EF28 BF6 HK7 

GJ8 GH9 

AE10 DI10 

IK10 AG12 

CD13 

BH15 

ABCDE

FGHIJK 

END empty BF6 HK7 

GJ8 GH9 

AE10 DI10 

IK10 AG12 

CD13 

BH15 

ABCDE

FGHIJK 

 

§7.5. Prim’s Algorithm 
Another algorithm to find a 

minimal spanning tree was 

first developed by Vojtech 

Jarnik in 1930 but was 

independently discovered 

by Robert Prim in 1957 and 

is known as Prim’s 

algorithm. 
JARNIK PRIM 
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Often different spanning trees are found by Kuskal’s and 

Prim’s algorithms, but of course the total weight will be 

the same. 

 

PRIM’S ALGORITHM: 

(1) Create a list, called list A, containing all the edges 

except one of lowest weight. 

(2) Create a list, called list B, consisting of this edge. 

(3) Create a list, called list C, consisting of the endpoints 

of this edge.  

(4) If list A is empty END. 

(5) Remove any edges in list A that have both endpoints 

in list C. 

(6) Of all the edges in list A that have exactly one 

endpoint in list B, choose one of lowest weight, transfer 

it to list B and add the other endpoint to list C. 

(7) Go to step (4). 

List B will consist of the edges in a minimal spanning 

tree. 

 

Example 5 (continued): 
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LIST A LIST B LIST C 

HK7 GJ8 GH9 

AE10 DI10 IK10 

AG12 CD13 BH15 

AB16 FG17 CI20 

CH22 EF28 

BF6 BF 

HK7 GJ8 GH9 

AE10 DI10 IK10 

AG12 CD13 AB16 

FG17 CI20 CH22 

EF28 

BF6 BH15 BFH 

GJ8 GH9 AE10 

DI10 IK10 AG12 

CD13 AB16 FG17 

CI20 CH22 EF28 

BF6 BH15 

HK7 

BFHK 

GJ8 AE10 DI10 

IK10 AG12 CD13 

AB16 FG17 CI20 

CH22 EF28 

BF6 BH15 

HK7 GH9 

BFGHK 

AE10 DI10 IK10 

AG12 CD13 AB16 

CI20 CH22 EF28 

BF6 BH15 

HK7 GH9 GJ8 

BFGHJK 

AE10 DI10 AG12 

CD13 AB16 FG17 

CI20 CH22 EF28 

BF6 BH15 

HK7 GH9 GJ8 

IK10 

BFGHIJK 

AE10 AG12 CD13 

AB16 FG17 CI20 

CH22 EF28 

BF6 BH15 

HK7 GH9 GJ8 

IK10 DI10 

BDFGHIJK 
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LIST A LIST B LIST C 

AE10 CD13 AB16 

CI20 CH22 EF28 

BF6 BH15 

HK7 GH9 GJ8 

IK10 DI10 

AG12 

ABDFGHIJK 

CD13 AB16 CI20 

CH22 EF28 

BF6 BH15 

HK7 GH9 GJ8 

IK10 DI10 

AG12 AE10 

ABDEFGHIJK 

CI20 CH22 BF6 BH15 

HK7 GH9 GJ8 

IK10 DI10 

AG12 AE10 

CD13 

ABCDEFGHIJK 

 BF6 BH15 

HK7 GH9 GJ8 

IK10 DI10 

AG12 AE10 

CD13 

ABCDEFGHIJK 

 

This spanning tree is: 
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§7.6. Graph Colouring 
Imagine the task of designing a school timetable. If we 

ignore the complications of having to find rooms and 

teachers for the classes we could propose the following 

very simple model. We suppose that we have a certain 

number of subjects taken by a certain number of 

students. We’ll suppose that all subjects require just one 

class. In setting up the timetable we must ensure that if 

two subjects have at least one student in common we 

must allocate different times. 

 

So imagine that the subjects are represented by the 

vertices of a graph and that we have an edge between 

subjects that have one or more common students. If we 

colour the vertices in such a way that adjacent vertices 

have different colours we can arrange for all subjects 

that were coloured with the same colour to be held at the 

same time. 

 

We could simply colour each vertex with a different 

colour. This would correspond to timetabling each 

subject at a different time. But there aren’t enough hours 

in the week and it’s important to try to use as few time-

slots, or as few colours, as possible. This is one 

application that would benefit from a solution to the 

problem of colouring graphs with as few colours as 

possible.   
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An n-colouring of a graph is an assignment of “colours” 

1, 2, … , n to the vertices of a graph so that adjacent 

vertices have different colours. The chromatic number, 

(G), of a graph G, is the smallest n for which an n-

colouring exists. 

 

Example 6: For this graph G, (G) = 3. 

                    3                              1                            1 

1        2                     4        2                 1         2 

              4     5    6                  3          2               1      2   2 

 
 

7         8           9       3        1           3     2         3          1 

   9-colouring              4-colouring              3-colouring 

 

No 2-coloring exists. Around the pentagon we’d have to 

alternate colours, but because of the odd number of sides 

we’d end up with two adjacent vertices with the same 

colour. So 3 is the minimum number of colours. 

 

Example 7: The chromatic number of the complete 

graph Kn is n. 

Proof: Since every vertex is adjacent to every other we 

need to use n distinct colours. 

 

 

 

 

               = 3                                     = 5 
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Every graph that contains a subgraph with chromatic 

number n must itself have chromatic number at least n. 

So, for example, the chromatic number of any graph that 

contains a triangle must be at least 3. 

 

Example 8: The chromatic number of an n-sided 

polygon is: 


2 if  n  is even

3 if  n  is odd
  

 

 

 

 

 

                   = 2                                   = 3 

 

Example 9: The chromatic number of  Km,n  is  2. 

Proof: Colour the m vertices one colour and the n 

vertices the other colour. 

 

 

 

 

 

 

 

                                     (K4,3) = 2 
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Theorem 3: The chromatic number of a tree (connected 

graph with no cycles) is 2 (except where there’s only 

one vertex). 

Proof: Choose a vertex V0. Each vertex has a unique 

distance from V0. Use one colour to colour those vertices 

whose distance from V0 is even and the other colour for 

those vertices whose distance is odd. Clearly this is a 

valid 2-colouring. ☺ 

 

 

 

 

 

 

 

§7.7. The Chromatic Polynomial of a 

Graph 
The chromatic polynomial of a graph G is the number 

of ways of colouring  G  with k colours (a polynomial in 

k). It is denoted by (G)(k). The chromatic number of G 

is the smallest value of k such that (G)(k) is positive. 

For simplicity, unless we need to specify the parameter 

k, we’ll write (G)(k) as (G). 

 

Theorem 4: (Kn) = k(k − 1) … (k − n + 1). 

Proof: Order the vertices in some way. There are k 

colours that can be assigned to the first vertex. Any one 

of the remaining colours can be assigned to the second 

vertex, and so on. ☺ 
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Example 10: (K3) = k(k − 1)(k − 2). 

 

                                  k colours 

 

 

                                           

                         k − 1                   k − 2 

                      colours                colours 

 

Theorem 5: If G is a tree with n vertices then: 

(G) = k(k − 1)n−1. 

Proof: We use induction on the number of vertices. 

It’s clearly true for n = 1. 

Suppose the result is true for trees with n vertices and 

suppose that we have one with n + 1  vertices. 

Choose any vertex of degree 1 and remove it, 

together with the associated edge. 

By induction the resulting tree can be coloured 

with k colours in k(k − 1)n−1 ways. Reinstating the 

deleted vertex, it is adjacent to only one coloured vertex 

and so can be coloured in k − 1 ways, giving a total 

number of colourings of k(k − 1)n. ☺ 

giving a total number of colourings of k(k − 1)n. 

                                                               k−1 
 

                                     k−1                         k−1 

                                                            k−1 

                                                             k−1 

            k               k−1        k−1          k−1          k−1 
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We now show how to compute the chromatic 

polynomial of a graph. The method is inductive. From a 

given graph G we produce two simpler graphs G− and G= 

and we use their chromatic polynomials to obtain the 

chromatic polynomial of G. 

 

Let G be a graph. 

Select any two adjacent vertices A and B. 

Let G− be the same graph with the edge AB deleted. 

Let G= denote the graph G with vertices A and B 

identified. (This means they become a single vertex and 

any edge having either A or B as an endpoint now has, 

instead, this combined vertex.) 

instead, this combined vertex.) 

    A            B                  A           B                 A = B 

 

 

 

 

Example 11: 

     A              B         A             B      A = B 

 

 

 

 

             G                           G −                    G= 

 

Or choosing a different edge: 
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      A                         A                      A = B 

 

 

 

                        B 

              G                          G−                    G= 

 

Theorem 6: Let G be a graph. Select any two adjacent 

vertices A and B and let G−  and  G=  be defined as 

above. Then 

(G) = (G−) − (G=). 

Proof: If we k-colour G− we’re free to colour A and B 

the same colour. But we don’t have to. We could just as 

validly colour them different colours (provided this was 

consistent with the colourings at the other vertices). 

 

There are two types of colourings of G− in terms of 

what happens to A and B 

A, B are given the SAME 

colour 

A, B are given 

DIFFERENT colours 

              A           B 

 

 

 

                    G− 

                A           B 

 

 

 

                     G− 

Each of these colourings 

of G− gives a valid 

colouring of G=. 

Each of these colourings of 

G− gives a valid colouring 

of G. 
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                 G= 

 

 

  

                     G 

 

Hence  (G−) = (G=) + (G).  The result now follows 

algebraically. ☺ 

 

Example 12: 

(     ) = (    ) − (     ) 

      = k(k − 1)3 − k(k − 1)(k − 2) 

      = k(k − 1)[(k − 1)2 − (k − 2)] 

      = k(k − 1)(k2 − 3k + 3). 

Example 13: (    ) = (    ) − (   ) 

Now (    ) =  (    ).(k − 1) = k(k − 1)2(k − 2) 

since once the triangle has been coloured the remaining 

vertex can be coloured any colour, except the colour of 

the vertex to which it is attached. And 

(   ) = (   ) − (    ) = k(k − 1)4 − k(k − 1)(k2 − 3k + 3) 

from example 8. Hence 

(   ) = k(k − 1)4 − k(k − 1)(k2 − 3k + 3) − k(k − 1)2(k − 2) 

 = k(k − 1)[(k − 1)3 − (k2 −3k + 3) − (k − 1)(k − 2)] 

 = k(k − 1)[k3 − 3k2 + 3k − 1 − k2 +3k − 3 − k2 + 3k − 2] 

 = k(k − 1)(k3 − 5k2 + 9k − 6) 

 = k(k − 1)(k − 2)(k2 − 3k + 3). 

 

It follows that the chromatic number of     is 3. This was 

pretty obvious, without all that calculation, but for a 
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much more complicated graph, where the chromatic 

number is not so obvious, this could be a useful 

technique. Also, it could form the basis for a computer 

program to compute the chromatic number of a graph. 

 

Theorem 6: If Cn is a cycle with n vertices then: 

(Cn) = (k − 1)n + (−1)n(k − 1). 

Proof: Induction on n. (C3) = (K3) = k(k − 1)(k − 2) 

so it holds for n = 3. 

Suppose that it holds for n and let G = Cn+1. 

(         ) = (         ) − (         ). 

(Cn+1) = k(k − 1)n − (Cn) 

             = k(k − 1)n − (k − 1)n − (−1)n(k − 1) 

             = (k − 1)n+1 + (−1)n+1(k − 1). 

Hence it holds for n + 1 and so, by induction, it holds for 

all n. 
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