7. GRAPH ALGORITHMS

87.1. Eulerian Graphs

The Swiss mathematician Leonard Euler (pronounced
“Qiler”’) once asked whether it was possible to go for a
walk around the city of Konigsburg, crossing each of the
7 bridges exactly once.

Bridges of Kénigsberg

There are 4 pieces of land and 7 bridges. We can
represent them by a graph with 4 vertices and 7 edges as
follows.

191

This is a graph with multiple edges and we have
chosen to focus on graphs with at most one edge
connecting any two vertices. However the reason there is
no such path extends to graphs in general, whether or not
there are multiple edges.

With a walk we must enter each vertex and leave
each vertex so the degree of each vertex must be even.
Euler didn’t make it clear whether one had to return to
the starting point. If not, the degree of these two vertices
could be odd. But the graph in question has all 4 vertices
with odd degree. That is all 4 vertices have to be the start
or end of a walk. The only way we could achieve the
goal would be to take a helicopter ride at some point. If
we had to return to where we started, two helicopter
rides would be necessary — not what Euler had in mind!

An Eulerian cycle in a graph (we are back to undirected
graphs with no multiple edges) is one that passes along
every edge exactly once. An Eulerian graph is one that
has an Eulerian cycle. (Remember to pronounce
Eulerian as “Oil-air-ian”.)

Example 1: Which of the following graphs are

Eulerian? I I I
B C

192

A

Solution: A is Eulerian, but not B or C. The third graph
Is clearly not Eulerian because it’s not connected. But
being connected is clearly not enough.

Theorem 1: An undirected graph is Eulerian if and only
If it is connected, and every vertex has even degree.
Proof: Suppose G is Eulerian. Clearly G must be
connected. Moreover, since we must enter and exit
every vertex along different edges the degree of every
vertex must be even.

Now suppose that G is connected and every vertex
has even degree. We prove the theorem by induction on
the number of edges. Suppose G has E edges and the
theorem is true for graphs with fewer than E edges.

G clearly has a cycle. Simply start at some point
and move to another vertex. Since every vertex has
degree at least 2 we can continue the path until we repeat
a vertex. That portion of the path between the two visits
to that vertex will be a cycle.

Remove the edges of this cycle and remove any
vertices that are now isolated (these would have had
degree 2 in the original graph), The resulting graph will
have every vertex of even degree (we have removed 2
edges from each vertex visited in this cycle). But it may
no longer be connected. Let Cy, Cy, ... , Ck be these
components.

However each component is connected and will have
every one of its vertices with even degree. Moreover

193

these components will have fewer edges than G. Hence
there is an Eulerian cycle in each of these components.

Now, start at one of the vertices in the original cycle.
This vertex will be in one of the C;. Now trace out the
Eulerian cycle in this component. Continue around the
original cycle. However, every time you enter a new C;
for the first time trace out the corresponding Eulerian
cycle. Finally you’ll return to your starting point. This
will be an Eulerian cycle for the graph G.

Example 2: Suppose G is the graph:

B c D

A G
E ‘
H | J K

Start at A and travel the path AEHCJFE. Having
repeated E we find the cycle EHCJFE.

Now remove this cycle.

There are 2 components. Each has an Eulerian
cycle, for example, ABE and CDKGFKJIC.

Combining these with the original cycle, as
described in the proof of Theorem 2, we get the Eulerian
cycle EABE H CDKGFKIJIC JFE.

§7.2. Hamiltonian Graphs

In 1857 the mathematician Sir William Hamilton created
a puzzle that, in its day, was almost as popular as the
Rubik’s Cube. It was a
wooden dodecahedron
in which the 20 vertices
were labelled with the
name of a city. The
problem was to make a
world tour, starting and
finishing at the same city and passing along the edges, so
that each other city is visited exactly once.

195

We don’t need a solid dodecahedron to solve the puzzle.
The edges form a graph on a sphere that becomes a
planar graph when we flatten it out.

\ Manchesier

Amsterdam

A Hamiltonian path in an undirected graph is a path
that passes through each vertex exactly once. It clearly
cannot pass along each edge more than once, but some
edges will not occur.

A Hamiltonian cycle in an undirected graph is a cycle
that passes through every vertex exactly once. (Of
course it will return to the vertex where it began.)

A Hamiltonian graph is an undirected graph that has a
Hamiltonian cycle. Clearly a Hamiltonian graph must be
connected.

Hamilton’s Dodecahedron Puzzle is equivalent to
finding a Hamiltonian cycle in the above graph.

196

Example 3: Arrange the numbers 1 to 10 around a circle
so that the sum of any two adjacent numbers is a prime
number.

Solution: Create a graph in which the vertices are
numbered 1 to 10 and where there is an edge connecting
two vertices if their numbers total a prime number. Your
graph might look a lot messier than mine, but it should
be an equivalent graph in terms of what numbers are
connected to what. It is worth trying to draw the graph
with as few crossings as possible.

Now to solve the puzzle we need to find a Hamiltonian
cycle in this graph. That is, a path that passes through
each vertex exactly once and returns to where it begins.
It doesn’t matter where we start, because this will be a
closed path. Clearly 1258310947 6 1 is a solution.

197

Theorem 2 (ORE): If deg(X) + deg(Y) > n whenever X
IS not adjacent to Y in an undirected graph G with n
vertices then G is Hamiltonian.
Proof: Suppose G satisfies these conditions but is not
Hamiltonian. Add extra edges until you reach a graph H
such that H is not Hamiltonian but adding one extra edge
UV makes a Hamiltonian graph K. Clearly this edge
must be included in every Hamiltonian cycle of K.
Removing this edge will give a Hamiltonian path:
ViVo2Vs... Vo1 V, in H.
Everything that follows refers to the graph H.

Since G is a subgraph of H the assumption of the
theorem carries across to H. This is because two vertices
being non-adjacent in H implies that they are non-
adjacent in G and the degree of every vertex in H is
greater than or equal to its degree in G. Also, since H
has exactly the same vertices as G, H has n vertices.

Let S={i|V;isadjacent to Vi}.

Then #S = deg(V1). Clearly 1 ¢ S.

Moreover n ¢ S, for if V, is adjacent to V; then adding
this to the Hamiltonian path would give a Hamiltonian
cycle.

Let T={i|i+1e S} Then#T =#S = deg(V1).
Also V, ¢ T.

Let R ={i| Viis adjacent to V,}.

Then #R = deg(Vy).

198

Clearly V, ¢ R,

Sincen ¢ S, V; and V,, are not adjacent and so:
deg(V1) + deg(Vy) > n.

Hence #T + #R > n. Since #(T U R) <n -1,

#TNR)>1.

Let Vi e T n R. Then ViV, and V41V are edges in H.
Then V1V2,V3 eoe VikedVIVV21Vie2 - ViVl ... Vg IS
a Hamiltonian cycle in H, a contradiction. %©

\V Vo1 Vi \VAS

Example 4: Let G be the following graph.
A B

E
D

The number of vertices is n = 7. The degrees of the
vertices are as follows:

A|B
315

&0
w|g
~m

-
Sl

1N

199

The pairs of non-adjacent vertices are: AC, AE, AG, BE
and CD

At first glance it might appear that G is not
Hamiltonian. Suppose this is the case.

Suppose that when we add the edge CD it is still
not Hamiltonian. But adding the edge GD as well the
graph is clearly Hamiltonian. So in terms of the notation
of the above theorem H is:

A B

and K is A B

D

The cycle ABCGDEFA is a Hamiltonian cycle in K and
DEFABCGD is a Hamiltonian path in H.

200

Vi=D,V,=E,Vz3=F,V4=A,Vs:=B,Vs=C, V; =GC.
S={2,4,56,7}T={1,3,4,5 6} R={1, 2, 3, 6}.
#T =5=#S =deg(D) =5. #R =deg(G) =5.
SoTnR={1, 3, 6}.

Suppose we choose k=1,s0k +1 =2,

Then we get the Eulerian cycle D GCBAFE D in H.
Suppose we choose k=3,s0k +1 =4.

Then we get the Eulerian cycle DEF GCBA D in H.
Suppose we choose k=6,so0k +1=7.

Then we get the Eulerian cycle DEFABC G D in H.
These are not Hamiltonian cycles for G, but
DEFGCBAD is. So G is indeed Hamiltonian, as it ought
to be since it satisfies the hypothesis of Theorem 2.

§7.3. Minimal Spanning Trees

Starting with any connected undirected graph we can
obtain a tree by removing edges so as to remove cycles.
If the resulting tree includes all the vertices we say that it
IS a spanning tree.

Example 5: The following undirected graph G is
connected.

201

The following is a spanning tree for G.

Let’s now make G into a weighted graph.

16 13

The total weight of this spanning tree is 130. Now the
vertices in our original weighted graph might represent
towns, with the weights being the distances between

202

them. If we want to build roads connecting these towns,
as cheaply as possible, we might choose to base the
network on a spanning tree. This particular spanning tree
would require a total of 130 kilometres of road. But
perhaps there is one whose total weight is less than 130.

The weight of a spanning tree is the sum of the weights
of its edges. A minimal spanning tree in a weighted
undirected graph is a spanning tree of lowest weight.
How might we systematically go about finding such a
minimal spanning tree?

§7.4. Kruskal’s Algorithm

Kruskal’s Algorithm (J.B. Kruskal) b

finds a minimal spanning tree in a .7 U
weighted undirected graph. We
start with an edge of lowest weight.
At each stage we examine all the
edges which could be added
without producing a cycle, and of
these edges we choose one of
lowest weight. While this seems a
good strategy it’s not clear that it
will guarantee a minimal spanning tree at the end.

<

203

KRUSKAL’S ALGORITHM for finding a minimal
spanning tree in a connected, weighted undirected
graph.

(1) Create a list of the edges and their weights, in
ascending order of weights. Call this list A.

(2) Create an empty list of edges, and their weights,
called list B.

(3) Delete any edges from list A which would create a
cycle if added to the graph in list B.

(4) If list A is empty END.

(5) Transfer the first edge from list A to list B.

(6) Go to step (3).

List B will now contain the edges of a minimal spanning
tree.

Example 5 (continued): We name the vertices.

204

STEP | LIST A LISTB
(1), BF6 HK7 GJ8 GH9 AE10 | empty
(2) DI10 IK10 AG12 CD13
BH15 AB16 FG17 CI20
CH22 EF28
(3), HK7 GJ8 GH9 AE10 DI10 | BF6
(4), IK10 AG12 CD13 BH15
(5) AB16 FG17 Cl20 CH22
EF28
(3), GJ8 GH9 AE10 DI10 IK10 | BF6 HKY7
4), AG12 CD13 BH15 AB16
(5) FG17 CI20 CH22 EF28
(3), GH9 AE10 DI10 IK10 | BF6 HK7 GJ8
(4), AG12 CD13 BH15 AB16
(5) FG17 C120 CH22 EF28
(3), AE10 DI10 IK10 AG12|BF6 HK7 GJ8
(4), CD13 BH15 AB16 FG17 | GH9
(5) Cl20 CH22 EF28
(3), DI10 IK10 AG12 CD13|BF6 HK7 GJ8
4), BH15 AB16 FG17 CIl20 | GH9 AE10
(5) CH22 EF28
(3), IK10 AG12 CD13 BH15|BF6 HK7 GJ8
4), AB16 FG17 Cl20 CH22 | GH9 AE10 DI10
(5) EF28
(3), AG12 CD13 BH15 AB16 |BF6 HK7 GJ8
(4), FG17 CI20 CH22 EF28 GH9 AE10 DI10
(5) IK10

205

3),

CD13 BH15 AB16 FG17

BF6 HK7 GJ8

4), Cl20 CH22 EF28 GH9 AE10 DI10

(5) IK10 AG12

(3), BH15 AB16 FG17 CI20 |BF6 HK7 GJ8

4), CH22 EF28 GH9 AE10 DI10

(5) IK10 AG12 CD13

(3), BH15 AB16 FG17 EF28 BF6 HK7 GJ8

4) GH9 AE10 DI10
IK10 AG12 CD13

(5) AB16 FG17 EF28 BF6 HK7 GJ8
GH9 AE10 DI10
IK10 AG12 CD13
BH15

END |empty BF6 HK7 GJ8

GH9 AE10 DI10
IK10 AG12 CD13
BH15

This minimal spanning tree is

206

and its weight is 100, a big improvement on the previous
spanning tree. Moreover, by Kruskal’s Theorem, we’ll
never be able to do any better.

An important stage in the algorithm is to delete those
edges which, when added to the tree in list B, would
create a cycle. If we have a diagram to look at we can do
this ‘by inspection’.

But if we have a graph with many thousand vertices
there’s no way we’d attempt to draw it. The graph will
only ever exist as a list of edges, together with their
weights. So how would our Kruskal program deal with
this?

We can do this by keeping a list of the components in
our graph B. Then, as we scan through the edges in list
A, we delete those edges whose two vertices lie in the
same component.

If vertices P, Q were in the same component there would
be a path connecting them. Adding the edge PQ would
provide a second path from P to Q and hence there
would be a cycle. In this case we’d delete that edge from
list A. Otherwise that edge remains, unless it is chosen
to be transferred to list B.

207

EXPANDED KRUSKAL’S ALGORITHM for
finding a minimal spanning tree in a connected,
weighted undirected graph.

(1) Create a list of the edges and their weights, in
ascending order of weights. Call this list A.

(2) Create list B, an empty list of edges and their
weights.

(3) Create an empty list of components. Call it list C.

(4) Delete any edges from list A where both endpoints
lie in the same component.

(5) If list A is empty END.

(6) Transfer the first edge PQ from list A to list B.

(7) If neither P nor Q is in a component create a new
component PQ.

(8) If P is in a component and Q is not add Q to that
component.

(9) If P, Q are in different components combine these
components into one.

(10) Go to step (4).

Example 5 (again):

STEP | LISTA LISTB |LISTC

(1), BF6 HK7 GJ8 GH9 | empty empty
(2), AE10 DI10 IK10
(3) AG12 CD13 BH15
AB16 FG17 Cl20
CH22 EF28

208

STEP LIST A LISTB | LISTC
(4), (5) |HK7 GJ8 GH9 AE10 | BF6 empty
(6) D110 IK10 AG12

CD13 BH15 AB16
FG17 Cl120 CH22
EF28
(7) HK7 GJ8 GH9 BF6 BF
AE10 DI10 IK10
AG12 CD13 BH15
AB16 FG17 CI20
CH22 EF28
8), (9), |GJ8 GH9 AE10 BF6 BF
(4) - (6) | DI10 IK10 AG12 HK7
CD13 BH15 AB16
FG17 Cl120 CH22
EF28
(7) GJ8 GH9 AE10 BF6 BF HK
DI10 IK10 AG12 HK7
CD13 BH15 AB16
FG17 CI20 CH22
EF28
(8), (9), |GH9 AE10 DI10 BF6 BF HK
(4)-(7) | IK10 AG12 CD13 HK7 GJ
BH15 AB16 FG17 GJ8
Cl120 CH22 EF28
(8), (9), | AE10DI10 IK10 BF6 BF
(4)-(7) | AG12 CD13 BH15 HK7 GHJK
AB16 FG17 CI20 GJ8
CH22 EF28 GH9

209

STEP LIST A LISTB | LISTC
(8), (9), | DI10 1K10 AG12 BF6 BF
(4) - (7) | CD13 BH15 AB16 HK7 GHIK
FG17 CI20 CH22 GJ8 AE
EF28 GH9
AE10
(8), (9), |IK10 AG12CD13 BF6 BF
(4) - (7) | BH15 AB16 FG17 HK7 GHIK
CI20 CH22 EF28 GJ8 AE DI
GH9
AE10
DI10
(8), (9), | AG12CD13BH15 |BF6 BF
(4) - (7) | AB16 FG17 CI20 HK7 DGHIJK
CH22 EF28 GJ8 AE
GH9
AE10
DI10
IK10
(8), (9), | CD13 BH15 AB16 BF6 BF
(4) - (7) | FG17 C120 CH22 HK7 ADEGH
EF28 GJ8 1IK
GH9
AE10
DI10
IK10

AG12

210

STEP LIST A LISTB LIST C

(8), (9), |BH15AB16 FG17 |BF6 HK7|BF
(4)—(7) |CI20CH22 EF28 | GJ8 GH9| ACDEG
AE10 DI10 | HUK
IK10 AG12
CD13

(8), (9), |ABl6FG17EF28 |BF6 HK7|ABCDE
(4) - (7) GJ8 GH9 | FGHIK
AE10 DI10
IK10 AG12
CD13
BH15

END empty BF6 HKY7 | ABCDE
GJ8 GH9 | FGHIK
AE10 DI10
IK10 AG12
CD13
BH15

§7.5. Prim’s Algorithm

= Another algorithm to find a
minimal spanning tree was
first developed by Vojtech
Jarnik in 1930 but was
independently discovered
e 5 by Robert Prim in 1957 and

JARNIK is known as Prim’s
algorithm.

211

Often different spanning trees are found by Kuskal’s and
Prim’s algorithms, but of course the total weight will be
the same.

PRIM’S ALGORITHM:

(1) Create a list, called list A, containing all the edges
except one of lowest weight.

(2) Create a list, called list B, consisting of this edge.

(3) Create a list, called list C, consisting of the endpoints
of this edge.

(4) If list A is empty END.

(5) Remove any edges in list A that have both endpoints
in list C.

(6) Of all the edges in list A that have exactly one
endpoint in list B, choose one of lowest weight, transfer
it to list B and add the other endpoint to list C.

(7) Go to step (4).

List B will consist of the edges in a minimal spanning
tree.

Example 5 (continued):

212

LIST A

LISTB

LISTC

HK7 GJ8 GH9
AE10 DI10 IK10
AG12 CD13 BH15
AB16 FG17 CI20
CH22 EF28

BF6

BF

HK7 GJ8 GH9
AE10 DI10 IK10
AG12 CD13 AB16
FG17 Cl20 CH22
EF28

BF6 BH15

BFH

GJ8 GHY9 AE10
DI10 IK10 AG12
CD13 AB16 FG17
Cl20 CH22 EF28

BF6
HKY7

BH15

BFHK

GJ8 AEl10 DI10
IK10 AG12 CD13
ABl16 FG17 CI20
CH22 EF28

BF6 BH15
HK7 GH9

BFGHK

AE10 DI10 IK10
AG12 CD13 AB16
Cl20 CH22 EF28

BF6 BH15
HK7 GH9 GJ8

BFGHJK

AE10 DI10 AG12
CD13 AB16 FG17
Cl20 CH22 EF28

BF6 BH15
HK7 GH9 GJ8
IK10

BFGHIJK

AE10 AG12 CD13
ABl16 FG17 CI20
CH22 EF28

BF6 BH15
HK7 GH9 GJ8
IK10 D110

BDFGHIJK

213

LISTA LISTB LIST C
AE10 CD13 AB16 | BF6 BH15 | ABDFGHIJK
Cl20 CH22 EF28 HK7 GH9 GJ8

IK10 D110
AG12
CD13 ABl6 CIl20 | BF6 BH15 | ABDEFGHIJK
CH22 EF28 HK7 GH9 GJ8
IK10 DI10
AG12 AE10
Cl20 CH22 BF6 BH15 | ABCDEFGHIJK
HK7 GH9 GJ8
IK10 D110
AGl12 AEI10
CD13
BF6 BH15 | ABCDEFGHIJK
HK7 GH9 GJ8
IK10 DI10
AGl12 AEI10
CD13

This spanning tree is:

13

214

87.6. Graph Colouring

Imagine the task of designing a school timetable. If we
ignore the complications of having to find rooms and
teachers for the classes we could propose the following
very simple model. We suppose that we have a certain
number of subjects taken by a certain number of
students. We’ll suppose that all subjects require just one
class. In setting up the timetable we must ensure that if
two subjects have at least one student in common we
must allocate different times.

So imagine that the subjects are represented by the
vertices of a graph and that we have an edge between
subjects that have one or more common students. If we
colour the vertices in such a way that adjacent vertices
have different colours we can arrange for all subjects
that were coloured with the same colour to be held at the
same time.

We could simply colour each vertex with a different
colour. This would correspond to timetabling each
subject at a different time. But there aren’t enough hours
in the week and it’s important to try to use as few time-
slots, or as few colours, as possible. This is one
application that would benefit from a solution to the
problem of colouring graphs with as few colours as
possible.

215

An n-colouring of a graph is an assignment of “colours”
1, 2, ..., n to the vertices of a graph so that adjacent
vertices have different colours. The chromatic number,
u(G), of a graph G, is the smallest n for which an n-
colouring exists.

Example 6: For this graph G, u(G) = 3.
3 1 1
1 2 4 2 1 2
([[[FA [
7 8 9 3 1 3 2 3 1
9-colouring 4-colouring 3-colouring

No 2-coloring exists. Around the pentagon we’d have to
alternate colours, but because of the odd number of sides
we’d end up with two adjacent vertices with the same
colour. So 3 is the minimum number of colours.

Example 7: The chromatic number of the complete
graph K, is n.

Proof: Since every vertex is adjacent to every other we
need to use n distinct colours.

216

Every graph that contains a subgraph with chromatic
number n must itself have chromatic number at least n.
So, for example, the chromatic number of any graph that
contains a triangle must be at least 3.

Example 8: The chromatic number of an n-sided
21f n iseven

polygon is: {3 if n is odd

p=2 p=3

Example 9: The chromatic number of Ky, is 2.
Proof: Colour the m vertices one colour and the n
vertices the other colour.

n(Kaz) =2

217

Theorem 3: The chromatic number of a tree (connected
graph with no cycles) is 2 (except where there’s only
one vertex).

Proof: Choose a vertex Vo. Each vertex has a unique
distance from V,. Use one colour to colour those vertices
whose distance from Vj is even and the other colour for
those vertices whose distance is odd. Clearly this is a
valid 2-colouring. %©

L \ % L
87.7. The Chromatic Polynomial of a
Graph

The chromatic polynomial of a graph G is the number
of ways of colouring G with k colours (a polynomial in
k). It is denoted by I'(G)(k). The chromatic number of G
is the smallest value of k such that I'(G)(k) is positive.
For simplicity, unless we need to specify the parameter
k, we’ll write I'(G)(K) as I'(G).

Theorem 4: T'(K,) =k(k—1) ... (k—n + 1).

Proof: Order the vertices in some way. There are k
colours that can be assigned to the first vertex. Any one
of the remaining colours can be assigned to the second
vertex, and so on. %©

218

Example 10: I'(K3) = k(k — 1)(k — 2).

k colours

k-1 k-2
colours colours

Theorem 5: If G is a tree with n vertices then:
I'(G) =k(k — 1)1,
Proof: We use induction on the number of vertices.
It’s clearly true forn = 1.
Suppose the result is true for trees with n vertices and
suppose that we have one with n + 1 vertices.

Choose any vertex of degree 1 and remove it,
together with the associated edge.

By induction the resulting tree can be coloured
with k colours in k(k — 1)™! ways. Reinstating the
deleted vertex, it is adjacent to only one coloured vertex
and so can be coloured in k — 1 ways, giving a total
number of colourings of k(k — 1)". %©
giving a total number of colourings of k(k — 1)".

k-1
k-1 k-1
k-1
4 O——eo k-1—e
k k-1 k-1 k-1 k-1

219

We now show how to compute the chromatic
polynomial of a graph. The method is inductive. From a
given graph G we produce two simpler graphs G- and G-
and we use their chromatic polynomials to obtain the
chromatic polynomial of G.

Let G be a graph.
Select any two adjacent vertices A and B.

Let G- be the same graph with the edge AB deleted.

Let G= denote the graph G with vertices A and B
identified. (This means they become a single vertex and
any edge having either A or B as an endpoint now has,
instead, this combined vertex.)
instead, this combined vertex.)

SN NN

Example 11:
B

Or choosing a different edge:

220

G G- G=

Theorem 6: Let G be a graph. Select any two adjacent

vertices A and B and let G- and G= be defined as
above. Then

I'G) =TI'(G) -TI'(G-).
Proof: If we k-colour G- we’re free to colour A and B
the same colour. But we don’t have to. We could just as
validly colour them different colours (provided this was
consistent with the colourings at the other vertices).

There are two types of colourings of G-in terms of
what happens to A and B

A, B are given the SAME A, B are given
colour DIFFERENT colours

ANV

Each of these colourings | Each of these colourings of

of G- gives a valid| G- gives a valid colouring
colouring of G.. of G.

221

NN

G= G

Hence I'(G-) =TI'(G:) + I'(G). The result now follows
algebraically. %©

Example 12:
r@)=rw)-rd)
=k(k —1)3 - k(k-1)(k—2)
=k(k - D[(k - 1)* - (k- 2)]
=k(k — 1)(k? — 3k + 3).
Example 13: T(A) = T(() - T(A)
Now ['(A) = T(&).(k — 1) = k(k — 1)*(k - 2)
since once the triangle has been coloured the remaining
vertex can be coloured any colour, except the colour of
the vertex to which it is attached. And
()=) - F(Q) = k(k — 1)* — k(k — 1)(k* — 3k + 3)
from example 8. Hence
F(Q) =k(k —1)* — k(k — 1)(k? — 3k + 3) — k(k — 1)*(k — 2)
=k(k — D[(k - 1)* — (k* -3k + 3) — (k — 1)(k — 2)]
=k(k —1)[k® - 3k?>+ 3k —1 — k? +3k —3 — k% + 3k — 2]
= k(k — 1)(k® — 5k? + 9k — 6)
=k(k — 1)(k — 2)(k? — 3k + 3).

It follows that the chromatic number of 6 is 3. This was
pretty obvious, without all that calculation, but for a

222

much more complicated graph, where the chromatic
number is not so obvious, this could be a useful
technique. Also, it could form the basis for a computer
program to compute the chromatic number of a graph.

Theorem 6: If C,, is a cycle with n vertices then:

['(Cn) = (k—1)"+ (-1)"(k - 1).
Proof: Induction on n. I'(C3) = I'(K3) = k(k — 1)(k — 2)
so it holds for n = 3.

=k(k-1)"-(k-1)"-(-D)"(k-1)

= (k= 1)"+ (-1)™(k - 1).
Hence it holds for n + 1 and so, by induction, it holds for
all n.

223

224

